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1 INTRODUCTION 

Since the experimental demonstration of gas-liquid chromatography in the 
early 195&l, the technique has achieved remarkable success. Since, that time, the 
growth in applications of the procedure has been phenomenal and when reliable, 
low-cost, easy-to-use gas chromographs became available in the mid-sixties, a pro- 
liferation of new columns, detectors and applications elevated the procedure into the 
most important and widely used technique m analytical chemistry today. 

However, because the raw data (the chromatogram) depends on both the ex- 
perimental conditions and the equipment used, it soon became apparent that a uni- 
form system of data presentation was necessary to give the accuracy required for the 
comparison of data between laboratories. This requirement is even greater today 
with the increasmg complexity of separations and the introduction of capillary col- 
umns. 

Such a system should be as independent as possible of the operating conditions 
as well as of the experimental equipment. Unfortunately the property directly mea- 
sured by the analyst, the total retention time, t R, is the sum of two factors. One, the 
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gas hold-up time (or dead time), t M, is dependent on the system flow-rate as well as 
on the void volume of the experimental apparatus. The other, the adjusted retention 
time, tk, is a characteristic of the separation process 

tk = tR - t&f (1) 

and is independent of the equipment used. 
Kaiser has stressed the importance of the adjusted retention time in several 

articles (in particular see refs. 24), while Parcher and Johnson5, as well as Lin and 
Parcher6, have shown Its importance when determining thermodynamic properties 
such as Henry’s law constants. 

Although mdependent of the equipment used, adjusted retention times are still 
dependent on several variables such as column temperature, flow-rate, pressure drop 
and liquid phase. A variety of systems have therefore been introduced, which depend 
only on the column temperature and stationary phase used7*8. The most useful of 
these for qualitative analysis is undoubtedly the retention index system introduced 
by Kovat@. 

2. KOVATS INDICES 

In 1958, Kovats9 introduced a system to overcome the problem of the uniform 
reporting of retention data. His system used the n-alkanes as a series of standards 
and expressed the retention of other substances relative to them using 

I = 200 ’ 
log V$(substance) - log Vi(nPz) + loo z 

log VP@zP,,Z) - log V&P,) (2) 

where V&zPZ) d VE(substance) Q V$(nP,+ & Vg = retention volume and nP, = 
n-paraffin with carbon number z. This equation gives the retention index of an 
even-numbered normal paraffin as 100 times its carbon number. Only even-numbered 
n-paraffins were used because it was believed (mcorrectly) that there would be an 
oscillation in the propertres of successive members of the n-paraffin series. However, 
experimental results later indicated that this was not the case and thus in 1964 Kovats 
redefined the index as 

I= 100. 
log V$(substance) - log V&P,) + loo z 

log V~(nP,+ 1) - log V%Pz) (3) 

where again V@rP,) < Qsubstance) < V@zPz+,), as related by Ettre’O. In this 
report Ettre suggested that retention volumes could be replaced by adJusted retention 
times or correspondmg distances on the chromatogram. Kovatsr 1 confirmed this in 
a later paper which introduced the more widely known formula 

(4) 

where t& = adjusted retention time of a homologue with carbon number z and t;, 
= adjusted retention time of a substance i. 
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It has subsequently been accepted that, under tsothermal conditions, retention 
indices, 1, can be calculated by interpolation within the linear relationship* 

In tk, =61+c (I = 100 . 2) (5) 

where b and c are constants (log tXZ = bZ + c is used by some authors) and where 
the Kovats retention indices for n-alkanes are defined as 100~ for each liquid phase 
at all temperatures. 

The retention index system of Kovats has now been widely accepted not only 
for comparing retention data, but also in the characterisation of stationary phases’ 3. 
Mazor er ~1.~4 have shown that Kovats retention indices are independent of the 
carrier flow-rate. Dahlmann ef al 15 have shown that while the index is dependent to 
some degree on both the stationary phase loading and the solid support used, this 
can be reduced to a mimmum by an appropriate chotce of the sohd support, chemical 
treatment of the support and the avoidance of very low stationary phase loadings. 
Finally, the temperature dependence of the index has been discussed by many authors 
mcludmg Wehrh and Kovats’ 6 who showed that a temperature dependence of less 
than one unit per degree applies in most instances. Novak et &.I’, amongst others, 
have reported a relationship between the specific retention volume, carbon number 
and temperature. A very extensive review of the Kovats retention index system pub- 
lished in 1983 by Budahegyt et al. la discussed these as well as many other aspects, 
citing almost 1400 references. 

Since the introduction of the retention index system, a large number of papers 
have analysed its reproducibility. Among others, Takacs and Kraliklg introduced the 
“Erdey” equation, a theoretical equation gtving the error of determination of reten- 
tion mdices. Other authors discussed individual contributions to the error and have 
suggested methods to mimmise such errors4~8,20-24. The paper by Schomburg and 
DielmanrP, which is a particularly useful discussion on sources of error, suggests an 
interlaboratory reproducibility of about one unit 

Except a few theoretical methods of calculating retention indices25,26, it can 
be seen from eqns. 1, 4 and 5 that a knowledge of the adjusted retention times and 
thus the column dead trme 1s essential. 

3 COLUMN DEAD TIME 

There has been increasing discusston in recent years regarding the merits of 
the various methods for determining dead time. In a number of papers several of 
these methods have been compared in an attempt to find a simple, accurate 
method18,27-32. Here we update and extend the review carried out by two of us in an 
earlier publication” 2. 

The different techniques can broadly be classified into etght categories. 

3.1. Theoretical 

Evans and Smith33 suggested in 1962 that the static column interstitial volume 
could be calculated from 

* We have used the nomenclature recommended by ASTM E 35.5’” where possible 
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2.54 SV 
do = ~ 

60 F 
PB, 

D,(lOO - P) 1 (6) 

where do = distance (cm) from the injection point to the dead volume point on the 
chart, S = the recorder chart speed (in./h), V = volume of the column packed, F 
= carrier gas flow-rate (cm3/min) at the average column pressure, B, = bulk density 
of the support, D, = true density of the support, P = percentage (w/w) of stationary 
phase and DL = density of stationary phase. This is subtracted from the observed 
retention distances for the n-alkanes and the adjusted retention distances are plotted 
against carbon number on log-linear graph paper. A further correction, da, to ac- 
count for the difference between static and dynamic column dead volumes is then 
applied 

6a = 
2.303 . C 6 log R 

C IiRext. 

where S log R = log R - log R,,, , = retention from the 
volume and = value from 

V GC 
m detail 8 and 9 to 

VGC =v 
273 2 pM 

(273.2 + TM) 760 + vD 

t,$f = 
V~~(273.2 + TM) 2 [(P&O>’ + (Pi/PO) + 11 

273.2 FPM . 3 [(pi/PO) + 11 
(9) 

where V = azotometer reading (cm3), pM = gas pressure (Torr) in the azotometer 
and m the room, TM = gas temperature (“C) in the azotometer and in the room, VD 
= volume (cm”) of apparatus not registered during purging with COZ, pi = pressure 
(Torr) in dosing system, p. = pressure (Torr) in the detector and F = carrier gas 
flow-rate (cm3/mm) at TM and pM. However, as Kaiser pointed out, this procedure 
is time-consuming, liable to error and requires much experience. Also its application 
with modern equipment may require extensive modifications. 

3.3. Direct measurement 

In an ideal system the dead time is considered to be the time an infinitesimal 
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amount of non-adsorbed gas takes to pass through the chromatographic system 
under identical conditions to those for the sample being analysed. James and Martin’ 
designated the air peak as the dead time and measured the retention times of sub- 
stances being analysed as the distances from this peak. Since then controversy has 
developed over the question of the best substance to use for dead-time measurement. 
The problem is especially acute with flame ionisation detectors which do not normally 
respond to air or inert gases. Thus methane has been suggested as a substitute when 
using such detectors34 

Many authors have supported the use of an and/or methane as an indication 
of dead time, especially in comparison to some of the early mathematical methods 
of calculating this parameter 5~8~22~23~35~3*. In addition several unique methods have 
been developed for use with flame ionisation detectors. Hilmi3g outlined a method 
in which the carrier gas is presaturated with a low volatility organic solvent, thus 
producing a negative air peak with a flame ionisation detector. By measuring the 
retention time of the air peak and making allowance for the vapour pressure of the 
solvent, he determined the column dead time. The method, which suffers from con- 
siderable experimental difficulties, requires large injections of air (of the order of 1 
cm”) and has not found wrde acceptance. 

Riedmann40 developed a method in which the flow-rate of hydrogen to a flame 
ionisation detector is reduced to 3-5 cm3/min. He found that the injection of a hy- 
drogen sample of about 1 cm3 and a splitting ratio of 1:lOO produced a recorder-pen 
deflection and could be used as a measure of the system’s dead time. Cramers et a1.*O 
described a similar method. In addition, Rredmann described a method suitable for 
Hewlett-Packard Series 5700 gas chromatographs (or any other chromatograph with 
a flame ionisation detector m which the ionisation current varies with the air flow). 
With the detector operating within the recommended air and hydrogen ranges, an 
injection of 2 1 mm3 of air will generate a detectable peak which can then be used 
as a measure of the column dead time. 

Guberska36,37 investigated the use of methane to measure column dead time 
at a series of temperatures and compared the results with the method developed by 
Hansen and Andresen4’. Guberska found that although the retention time of meth- 
ane was greater than the dead time obtained by the method of Hansen and Andresen, 
the standard deviation did not change with temperature, while the standard deviation 
of the dead time increases with an increase in temperature. He therefore proposed 
that the retention time of methane, adjusted according to 

tM = kH, - (k&)/163 (10) 

where A = amount (%, w/w) of stationary phase m the column, should be used as 
a measurement of the column dead time. 

However, the use of air or methane not only creates experimental difficultres 
but evidence of a net retention has been presented by many authors. In a series of 
papers, experimenters from the Universrty of New South Wales have shown that 
both air and methane show significant retention under the experimental conditions 
used, with methane showing retention on a wide range of column packings30,32,42-47, 
Garcia Dominguez et al. 48 also reported that methane was retained by normal liquid 
phases at temperatures as high as 180°C. Kaiser2’ warned against the use of several 
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gases including air and methane. Ettre13 reported errors when methane was used 
below 7o”C, while Becerra et aLQ9 reported that methane shows significant retention. 

Further, if one accepts the evidence that the use of any homologous series 
provides the same estimate of dead time 7,5o,51, then one is left with the uncomfortable 
conclusion that the retention of any C1 compound should be a good estimate of the 
column dead time. 

The use of other inert gases has been investigated by several authors. Riedo 
et aZ.52 presented extensive data on a senes of permanent gases and light hydrocar- 
bons at temperatures between 30 and 230°C on a tailor-made Cs, hydrocarbon sta- 
tionary phase. Neon was found to have the smallest gross retention volume. Nitrogen, 
hydrogen and argon had the next smallest, with all other substances having much 
larger gross retention volumes (note that as helium was the carrier gas it could not 
be tested). Parcher and Johnson5 compared the dead time estimated using four inert 
gases with that calculated using CI-C5 hydrocarbons. Then study confirmed that 
neon had the lowest retention time (again helium was not tested) and that methane 
had a small but measureable net retention time. Finally, a study by Ezrets and Vig- 
dergauzz3 confirmed that methane has a small net retention compared to an inert gas 
(helium and hydrogen), but concluded that it was smaller than that introduced by a 
mathematical method such as that of Peterson and Hirsch53. 

We believe that the explanation of the wide divergence of opinion on the use 
of an and especially methane as a dead-time indicator lies in three areas, the exper- 
imental conditions, the accuracy of retention-time measurements and the use to which 
the retention data are put. The retention of methane in particular is greatly affected 
by expenmental conditions and 1s larger at low temperatures, in gas-solid chro- 
matography, and at high pressures. The accuracy of measurmg retention times be- 
comes of importance under conditions of low methane retention and/or small gross 
retention times. Finally, the use of methane under conditions of low retention for the 
calculation of Kovats indices above 400 is unlikely to introduce large errors. On the 
other hand, its use at low temperatures on porous polymers may introduce significant 
errors for all but very strongly retained substances. A final problem lies in the com- 
parison of classical methods of dead-time calculation using methane. As will be point- 
ed out later, such methods can also lead to very significant errors. 

Therefore methane should only be used with extreme caution as an indication 
of the column dead time and the results should be verified by another method when- 
ever the experimental conditions are changed. 

From the above dlscusslon and the fact that flame ionisation detectors do not 
respond to permanent gases such as neon, it is clear that there IS a need for a math- 
ematical method of dead-time calculation. 

3.4. Graphical 

This method involves plotting the logarithm of the adjusted retention times of 
the n-alkanes against their carbon numbers and linearisation of this plot by trial- 
and-error variation of the dead time. First reported by Evans and Smith33 as well as 
Caste110 and ParodlS4, it is tedious and inaccurate and was soon superseded by var- 
lous mathematical treatments of the data. 
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3.5. Classical 

These methods use a limited number of homologues and generally require the 
solution of a small number (often one) of simple equations. The most widely used of 
the methods are described below. 

(a) The method of Peterson and Hirschs3 requires three evenly spaced hom- 
ologues. It is based on the assignment of an arbitrary carrier-gas front (column dead 
time), x0, as shown in Fig. 1 which uses three evenly spaced peaks to illustrate the 
method. All distances are then measured from this point which differs from the true 
dead time by 6. If x0 corresponds to the true column dead time then S = 0. In 
general, however, this is not the case and the distance to a given peak, tkr, is not 
measured from the true column dead time but from x0: 

The linear relationship between retention time and carbon number can now 
be expressed as 

log (tkz + 6) c1 2 (12) 

and when three evenly spaced peaks are used 

tXz+z + 6 = tk*+z, + 6 
t& + 6 tkz+i + 6 

(13) 

or 

6 = fkz+r2 - G&*+zr 

tkz+zt + tX* - 2tk,+, 
(14) 

By measuring from any arbitrary point, x o, to the peaks of three evenly spaced 
homologues, eqn. 13 can be solved for 6 which is positive if tM precedes x0 and 
negative if tM follows x0. The column dead time can then be determined by measuring 
a distance 6 from the arbitrary point x0. 

INJECT 

Fig 1 Schematic chromatogram I R = UnadJusted retention time, t’ R = retention time relatwe to x0; 
tX = adjusted retention time 
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Peterson and Hirsch suggested a further stmplificatton. By designation x0 as 
the peak of the second homologue, &+, = 0 and the distance measured between 
the peaks of homologues 2 and 1 multiplied by the distance between homologues 2 
and 3, divided by their sum (tkz is negative in this formulation), is the distance from 
homologue 2 to tM. 

(b) Gold 55 improved upon the method of Peterson and Hirsch by developing 
one which did not require the three homologues to be equally spaced. The method 
is based on the fact that log (tR, - tM) is proportional to the carbon number, z’ 

z = m log (tR, - tM) + k (15) 

where m and k are constants. Letting the difference between carbon numbers be z2 

- Zl = ~Izl,~, then 

Az1.2 = m [log (tRzz - t&f) - log (tRz, - t&d] (16) 

and 

4~1.2 
??I= 

log [(tRr* - tMM)/(tRzl - tdl 
(17) 

Rewriting m terms of AZ 1,3 and solving for tM gives: 

tRz, - 10(‘%3’m) . tRz, 

t&.f = 
1 - 10(~=1,3/“) 

(18) 

Eqns. 17 and 18 are simultaneous and can be solved by the method of successive 
approximations. 

Gold also suggested a graphical procedure in which eqn. 17 is rewritten in 
terms of AzlT3, giving two equations for m. The lines for these two equations are 
plotted by assuming values for tM and calculatmg the resulting values of m with each 
of the two equations. These sets of points are plotted and their common solution is 
the point at which the two lines intersect. 

Both these methods are tedious and have little to recommend them. 
(c) Kaiser 56 developed a program for the HP-65 programmable calculator 

which calculated the dead time by the method of Gold. In the same paper, another 
program for the HP-65 was presented which calculated the constants in the log tZ 
vs. Z relationship once the dead time was known. This program was subsequently 
reprinted with a correction by Ebel and Kaiser 57. Although this eliminated the te- 
dium from Gold’s method, it did not become widely used. This was probably due to 
the lack of availability of programmable calculators in 1974 and the fact that the 
advantages of the method over contemporary methods was relatively small. 

(d) Hafferkamp5 * as well as Hansen and Andresen41 developed a method 
which used three equally spaced homologues as proposed by Petersen and Hirsch. 
The advantage of their method was thU it eliminated the use of an artificial dead 
time and used a single calculation to determine the column dead time. Their equation 
can be expressed as follows: 
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tRz+i * - tRztRz+2r 
t 

M = 2tRz+21 - tRz - fRr+r 

(19) 

Ettre31 pointed out that this equation is in fact only a rearrangement of the 
simplified equations derived by Peterson and Hirschs3 (last paragraph in section 
3Sa). He then proceeded to generalise this approach to the situation where the ho- 
mologues are separated by unequal distances. Thus tRZ? - tRZ2 = n(tQ - tRzl). 
Unfortunately this leads to the comphcation of solving higher-degree equations. For 
n = 2 (the only case quoted) a quadratic must be solved. 

(e) In 1979 a method with some similarities to that of Gold and partially based 
on a method developed by SevZik and L6wentap29 was described by Al-Thamir et 
~1.~~. It begins with the linear relationship between the adjusted retention time and 
the carbon number and shows that this leads to a constant ratio of successive dif- 
ferences in retention times 

AtRs+l,z+z 
At = 

eb 
Rz,r + 1 

where b = the slope of the plot of eqn. 5. Hence: 

b = In (Ahz+l.r+2/tRz,z+d 

Having evaluated b, c IS calculated as: 

(21) 

t22) 

This is eqn. 4 of Al-Thamir et ds9 rewritten in a more convenient form. Then tM is 
calculated from: 

tM = tRz - e 
(bz + c) 

Now tM can be calculated for all homologues employed and a consistent result shows 
its validity. 

A comparison of the method with that of Hansen and Andresen4’ (eqn. 19) 
shows that although the method involves more calculation, it provides no advantage 
over Hansen and Andresen’s method. 

Ettre31 pointed out that the method is equally valid for homologues which 
differ by any distance, I, and thus is not restricted to consecutive homologues. Thus 
the method can be used for homologues with retention times tRz, tRz+l and tRzf21. In 
addition, he showed how the method could be generalised even further to the case 
where tRz - tRz = n(tRZ, - t&,). Unfortunately this leads to the need to solve 
higher orier equitions (n = 2 leads to a quadratic) and thus the method becomes 
very difficult for all but the simplest extensions. 

However, Ettre3’ cnticised the approach because of the “danger of ‘linearizing’ 
the tRL vs. c, relationship even where it is not valid”. He also pointed out that “in- 
dividual gas hold-up time values are obtained for the individual homologues which, 
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of course, is absurd since one can only have one single gas hold-up time for one 
chromatogram”. 

(f) In a recent paper T&h and Zala 6o extended the method of Al-Thamir et 

aLsg by deriving an expression for b which takes into account all possible ratios of 
the differences in retention times of neighbouring members of an homologous series. 
Expressions were also presented for c and t M which take into consideration the re- 

tention values of all homologues of a consecutive series. 
According to Al-Thamir er aL5 g (eqn 21) the ratio between two neighbouring 

retention-time differences can be expressed as 

b = In (&/LL~) (24) 

where A, and A, _ 1 are consecutive retention differences and z > 1. Thus b can be 
more generally expressed by not necessarily using consecutive differences, giving 

b,,,-. = i . In (&/A.-.) (l<<<z-1) (25) 

where bziz -,, = b value obtamed using the ratio of the zth and (z - n)th retention 

differences. 
For an homologous series with N members, N - 1 A values are obtained. By 

combinmg these differences in pairs, the total number of pairs can be expressed as: 

(N - l)! 

2[(N - 1) - 2]! 
(26) 

Therefore N - 2 values of b can be calculated from an homologous series having N 
members (N - 1 A values), using only neighbouring A values (in this case n = 1): 

Also N - 3 values are obtained using the ratio of those b values which follow each 
other by the omission of one A (in this case 12 = 2). The sum can be expressed as: 

By increasing the value of n the ratio of the first and last b value is obtained: 

bz,z-(N-2) = &. In (AN-I/AI) 

Now the sum of all b values expressed by all possible A values is given by 
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I&,,-, = In h (dN_Z/dZ)liz’l’(Z+l)f. . .l/(N-z- 1) 
(30) 

2=1 

where L = (N - 1)/2 if N is odd and L = (N/2) - 1 if N is even. 
Taking into account the total number of pairs of A values (eqn. 26), the mean 

value of b can be expressed as: 

b = 2W - 1) - 21! 
.ln i (AN-l/Az) l/r+l/(z+l)+ . . l/(N-z- 1) 

(N - l)! (31) 
r=1 

After calculatmg the mean value of b, the values of c and tM can be obtained from: 

c = In 
tRz+n - fRz 

exp[b(z + n)] - exp[bz] > 
(z + n > 2) (32) 

t,U = tRz - exp(bz + c) (33) 

Now these equations can be used to express the mean values of c and tM as follows: 

F = In 
(AIAZ.. . AN_#/(N-l) 5(22, + N - 2) 

- (exp 6) - 1 1 2 (34) 

=Rz &E-.-- 
exp[zib + c][exp(zN) - l] 

N N[exp(& - l] (35) 

Toth and Zala60 went on to show that their method gave similar results to 
both the statistical method of Grobler and BalizPl and their earlier iterative method 
(see section 3.7e). 

(g) Garcia Dominguez et a1.48 described a method (“approximate series 
method”) using any three homologues to calculate approximate retention times (and 
therefore the dead time). Two homologues are used to determine the approximate 
slope from: 

b z b&Rz3/tRzz)j/(Z3 - Z2) (36) 

A first approximation to the adjusted retention time of the first homologue can then 
be calculated from: 

tq = (lR,, - lRr,)/( 10['"2 - =lf’og’tR,3it,,2)i(=, - 221 - l> (37) 

The accuracy of tk, 1 will increase as the difference z3 - z1 increases and for lines 
with higher slopes. fi or increased accuracy the process can be repreated to obtain a 
better estimate of tk,,. If three estimates are obtained, a better approximation can 
be made using 
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= tRz: + h/(1 - d2/4) (38) 

where t;Z+ is the first approximation of t ;Pzl and d,, d2 are the differences between 
the first and second and the second and third approximations oftbzl . 

The dead time can then be calculated by subtracting the value found using 
eqn. 38 from the experimentally measured total retention time. However, the method 
shows no significant improvement over other classical methods and involves more 
effort in calculation than most. A second approximate method for use with only two 
homologues (“slope method”), presented in the same paper, is even less accurate and 
thus has little to recommend it. 

(h) Recently T&h and Zala62 introduced a method based on three non-suc- 
cessive n-alkanes. They developed a series of equations for calculating the slope, b, 
given different combinations of known and unknown n-alkanes within a group of 
either four or five consecutive n-alkanes. The dead time, tM, as well as c are then 
calculated using simple formulae. Unfortunately a different equation is required for 
the calculation of b m each case. In addition, no indication was given as to whether 
the method can be extended to the more general case where the three homologues 
are separated by random distances, e.g., homologues with carbon numbers z, z + 
x and z + y where x and y are random integers. The method is more complex than 
other classical methods and therefore does not offer any advantage over other less 
complex methods. 

3.6. Statistical 

The previous classical methods used a limited number of homologues and thus 
their accuracy was poor (see section 5 for a more detailed discussion). In addition 
some used graphical or numerical trial and error which decreased their usefulness. 
As the use of programmable calculators and microcomputers increased it became 
clear that far more sophisticated methods were not only feasible, but were a necessity 
if consistently reliable results were to be obtained. 

(a) Grobler and Balizs 61 developed a method which relied on the use of two 
linear regressions. The derivation, which is fully described in a previous paper by two 
of us32 (not in Grobler and Balizs’ paper), starts with eqn. 5. From this the following 
relationship between the difference in retention times and the carbon number can be 
derived 

ln (tRz+l - tRz) = ln A + bz (39) 

where A = ec(eb - l), and therefore a linear regression on eqn. 39 of log (tRz+ 1 - 
tRz) against z will give b as the slope. Therefore: 

z+n-1 r+n-1 z+n-1 

tn- l) 1 i ’ In [tR(I+l) - tRi] - 1 i . 1 ln [tR(i+l) - tRl] 
I== i=z I== 

b= (40) 
z+n-1 z+a-1 2 

(n-1) 1 i2 - 1 i 
I=* ( > i=z 
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tRz = tM + Aq’ (41) 

where A = ec and q = eb. Therefore a further linear regression can be carried out 
on eqn. 41 of In tRz against z. This gives 

1 4’ . 1 tR&' - 1 q2’ . 1 tRi 
j=z i=r i=z *=z 

tM = (42) 
/z+n- I 

! ) c q1 2 _ n z+51q2' 

Z=Z i=z 

and 

z+Pl 

C= n (43) 

Eqns. 40,42 and 43 allow the retention index of any compound to be calculated 
from: 

I = 100 (In tk - c)/b (44 

(b) This method has been extended by Van Tulder et ~1.~~. In addition they 
carried out an extensive evaluation of the method and produced a series of criteria 
to allow the best selection of homologues to be used in the two linear regressions. 

They proposed an extension m which homologues with equidistant carbon 
numbers were used instead of consecutive homologues. Thus the method starts by 
assuming a set of n consecutive homologues, starting with homologue z” as follows*: 

(tRz> fRz+l, . . . . * . . . . . tRz+n-I) 

or 

(tRj where i = z to z + n - 1) (45) 

Now a subset of n1 homologues are selected with carbon numbers at equal distance, 
m, from each other, starting with z i. This subset can be characterised by: 

[tRj where j = z1 to z1 + m(nl - l)] (46) 

Therefore eqn. 5 can be rewritten as 

In (tR., - tM) = b(z” + 11) + c (47) 

l Note that m the paper of Van Tulder et a1.63 1 andj are the sequence numbers of the homologues 
(starting with I), while m our review they are the true homologue numbers 
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where z” represents the carbon number of the basic group and j is the homologue 
number (z” will be set to 0 for the remainder of this review). 

Now eqn. 39 can be rewritten as 

In (t~,+~ - tRJ) = In A’ + bj (48) 

where A’ = ef(emb - 1). Therefore a linear regression on eqn. 48 produces 

Z-m z-m Z-m 

@‘- I) c j ’ In bRO+l) - ~RJ] - c j . c In [tRti+~) - fRj] 

J=zl ,=,I I=d 

b= (49) 
z-m z-m 2 

(n’--1) C j* - 1 j 
j=rl ( > I=9 

where Z = z1 + mnf and thus: 

hJ = tM + Alq’ 

A second linear regression on eqn. 38 grves 

Z Z Z Z 

c @ 1 fRj# - 1 qzJ ’ c fRj 

,=d J=Z1 ,=d J=Z1 

t&f = 
Z-m 

( 1 * jEl 4’ - nzim q2’ 
,=zl 

(51) 

and 

c Intk,--bE j 
]=zl 

C= 
J=Zl 

.1 
(52) 

Van Tulder et a1.63 carned out an extensive computer simulation to investigate 
the influence of statistical error on the relative standard deviation of the dead time, 
R.S.D. (tM). The study indicated that the minimum number of homologues required 
depended on the slope b. From a large number of computer simulations, the following 
empirical equation was developed 

No = (3/b) + 1 (53) 

where minimum No is 3 and No = the optrmum number of homologues. In addition, 
surprisingly it was found that three homologues with a separation distance, m, of 
1.5/b gave the lowest R.S.D. (tM) values. Hence the following procedure to reduce 
the statistical error in dead-time calculation to a minimum was proposed. 
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First an mitial calculation should be preformed with as many consecutive ho- 
mologues as possible, excluding any lower members which show non-linear behav- 
iour. From this calculation a value for b is obtained and used to calculate the distance, 
m, between homologues to obtain a slope factor 2 1.5. Finally the tM calculation is 
repeated with the properly selected homologues. 

Although extensive experience in our laboratory has shown that in general this 
method selects homologues which give a good estimate of dead time, two problems 
are apparent. The first is the authors’ use of R2 as an indication of linearity. In fact, 
R* is particularly insensitive m this application and is of no use when using only 
three homologues. A better test of linearity is needed. The second problem, which is 
dlscussed m more detail m our recent paper64, is that the method only ensures that 
over a large number of trials it will give the lowest R.S.D. (fM). However there is no 
guarantee that, given a particular set of retention times, the method will produce an 
acceptable estimate of the dead time. Our experience has been that in some cases the 
method can lead to very poor results. The reason is not difficult to understand. While 
the method provides the range of homologues needed to obtain a good estimate, the 
use of such a limited number of homologues for the actual dead-time calculation 
means that errors in the retention times of the chosen homologues can, under certain 
conditions, be magnified in the final dead time 2 8,32. We therefore recommend caution 
in the use of this section of the method. 

(c) Ambrus76 recently presented a method which determines both the column 
dead time, fM, and the slope in a single linear regression. Where Kovats indices are 
required, c can then be calculated either from a second regression or as the mean of 
a set of c values calculated using each adjusted retention time. 

Starting with the usual assumption of linearity of the log plot, an expression 
for relative retention can be calculated as follows: 

In (tRz - t&f) = bz + c 

tRz - fM = e - b=+c = ebzec 
(eqn. 5) 

(54) 

and 

tR(z + 1) - tM = b(z + 1) + c = ebZebeC 

thus 

fR(r+ 1) - tA4 ebzebec z-c@ 
tRz - tM ebrec 

which 1s a constant. Letting the constant be q gives 

(55) 

(54) 

tR(z+l) - tM = qtR, - qtM 

and thus 

tR(z+ 1) = $Rz - B 

(57) 

(58) 
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where B = t&q - 1). Therefore a regression of tR@+ 1j against tRz will give q as the 
slope (from which b can be calculated as In q and B as the intercept [from which TV 
equals B/(q - l)]. 

For the calculation of Kovats indices, c can now be calculated from eqn. 5 by 
a further regression of In tZZ against I. Alternatively, a series of values of c can be 
obtained by substituting each retention time into eqn. 5, and the mean of these values 
used as an estimate of c. 

Ambrus’ methods76 can also be extended to homologues with equidistant car- 
bon numbers by the technique of Van Tulder et a1.63 (section 3.6b). 

3.7. Iterative 

(a) Guardino et aLz4 presented a method in which an iteration is carried out 
on tM, with b and c calculated using a least-squares fit. The optimum values of f~, 
b and c are determined by minimising the sum of squares of the differences between 
the known and calculated retention-index values. A flow chart of the method is shown 
in Fig. 2, where UPLIM and LOWLIM are the upper and lower limits, respectively 
of the sum of squares of the deviation, TM is the dead time, INC is the increment 
in the dead time, IC is the calculated Kovats retention index, SUM is the sum of 
squares of the deviations, TR is the unadjusted retention times of the homologues, 
I is the known Kovats retention index (1002 where z is the carbon number) and 
PREC is the precision to which the answer is required. 

The method starts with an initial estimate of the dead time, which is used to 
determine adjusted retention times. A linear regression then allows b and c to be 
calculated and thus retention indices can be determined. Subtracting these from the 
known values gives a sum of differences which is compared to the upper and lower 
limits. If the estimate of tM 1s below the lower limit, the limits are reduced and the 
estimate of tM is increased. When this estimate increases above the lower limit, it is 
decreased and the incremenr is lowered by a factor of 10. The whole process is re- 
peated until the increment is less than the required precision (PREC). 

A very important point when using this method (not mentioned in the paper) 
is that the initial estimate of dead time must be less than the true mathematical dead 
time or the method will fail. Guardmo et al. suggested using 98% of the value de- 
termined by the method of Haferkamp58 as the initial estimate for their method. 
However, due to the occasional large errors that can occur when using any of the 
classical methods of estimating dead time, there is the possibility that this estimate 
may lead to an incorrect dead time. The best way of ensuring this does not happen 
1s to monitor the difference m consecutive sums of squares and ensure that a change 
of sign occurs before the sum of squares becomes larger than the lower limit and that 
the program does not stop within the first two iterations. 

(b) Bellas 5 also reported an iterative method of calculating dead time. The 
program, written m FORTRAN, makes an initial estimate for the dead time of one 
eighth of the minimum retention time. A linear regression is then carried out and the 
sum of squares of the deviations of the indices calculated for the reference compounds 
is found. The dead time 1s increased incremently until a minimum is passed in the 
sum of squares. The mcremenr is then halved and changed m sign and the fitting 
continued. Thus, after the first passage the increment adopts successive values of 
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JPLiW = 399999 
LOWLLM = 999990 

- m;l~“;“d guess r 

TR- T -TM 

1 

TM = TM + INc 

Clneor Regression 
of log TR vs 1 
to find A and El 

I 

- 

t . 
1 

TM= TM-INC ’ 
TM = TM- Z’INC 

LOWLIM- UPLIM 

1 J 
t- 

lNC= INCH0 

Fig 2. Flow chart for calculation of mathematical dead time by the method of Guardmo et al 24 

(- l)n2-” . (initial increment). Twelve is set as the maxlmum value of 12. In addition, 
limits are placed on the permissible values for t M, with negative values and values 
greater than the minimum retention time being rejected 

Bellas also reported that the program had been extended to calculate the index 
for data from linear temperature-programmed gas chromatography by fitting a po- 
lynomial of degree equal to the number of data points. 

Because of the similarity to the method of Guardmo et aZ.24 (the data used by 
Bellas give vertually identical results when used in the method of Guardmo et al.), 
it will be assumed that the methods are equivalent and only the method of Guardino 
et al will be discussed further. 

(c) Garcia Dominguez et aL4* reported an iterative method (“exact calculator 
method”) in a paper which introduced several new methods (section 3.5g). A flow 
chart of the method 1s shown in Fig. 3. 

The method initially uses the retention times of substances with known Kovats 
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Rg 3. Flow chart for the “exact calculator method” of Garcia Dommguez et al +8 

indices (such as the n-alkane homologues), measured from any pomt on the chro- 
matogram, in a linear regression. Letting the initial retention time of the alkane with 
the least retentlon be t+ the coefficients determined from the regression can be used 
to determine a new retention time for that alkane of tR+. A correction factor is then 
calculated: 
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dl = tR=; - t&l 
0 

(59) 

This correction, which can be either positive or negative depending on whether the 
initial retention time of the first alkane, t&A, is shorter or longer than the true reten- 
tion, is now applied to all peaks, producing a second set of retention times. These 
times are subsequently used in another linear regression and a second correction is 
calculated from the new retention of the alkane which initially had the lowest reten- 
tion time: 

This equation is equivalent to eqn. 3 of Garcia Dominguez et uI.~~, except for a 
correction. The ongmal equation implies that the correction is always the difference 
between the latest two values of the retention time of the lowest alkane. In fact, for 
the method to converge, the correction must be the difference between the latest value 
of the retention time and the originally measured retention time. 

After a sufficient number of cycles a final set of adjusted retention values is 
obtained. A refinement to the program is that the actual correction applied to each 
set of retention times can be multiplied by a “correction factor” to reduce the number 
of iterations required by the program. Fig. 4 shows the effect the process has on the 
linearity of the lot plot; the curvature of the log plot is reduced as the adjusted 
retention times approach their true values. 

(d) Toth and Zala62 mentioned an iterative method and also introduced a 
classical method (see section 3.5f). The method calculates the parameters in eqn. 5 
by first determinmg tM. On the basis of data pairs (t&,l) obtained by measurements 
on the n-alkanes, the coefficient of determination, R2, between the quantities Z and 
ln (tRz - tM) as a function of tM can be expressed as: 

/ 

=+I# ZiPI 
’ 

c 

z+fl 
C In (tRI - tM)Z* 

I=+ 1 
1 L . C In (tRi - tM) 

- i=z I=’ n 

RZ = RZ(tM) = 61) 
z+fl 

1 In (tRI - 6~) 1 2 ’ 1 [h (tR, - tM)]* - i=z 
n 

The dead time can be calculated from the value at which R2(tM) is a maximum. This 
value of tM can be obtained by solving the non-linear equation 

dR*/dtM = 0 (62) 

by an iterative technique. With a knowledge of tM, estimates of b and c can be 
computed by linear regression of Z versus ln (tRz - tM). 

Although no method was given for the iterative solution of dR2/dtM = 0, 
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retention 

3rd adpstment 

carbon number 

5 6 7 8 9 10 11 

Fig 4 SchematIc drawmg of the “exact calculator method” of Dommguez er a1.48. The pomts represent 
mltlal retention values The arrow shows the first correctlon applied. 

several methods of numerical differentiation are given m a book by Dorn and 
McCracken66. It should be noted that numerical differentiation suffers from sub- 
tractive cancellation, which can lead to very large errors. Because of the difficulty of 
overcoming this problem, numerical differentiation is not normally recommended if 
there are other methods available to solve the problem. 

An alternative solution which is not only faster, but also does not mvolve the 
problems associated with numerical differentiation is to mimmise 1 - R2 using an 
appropriate iterative technique. 

(e) One of the most versatile methods of dead-time estimation is undoubtedly 
the simultaneous non-linear least-squares estimation of tM, b and c28,30 by the use 
of numerical mmimisation67. When using this method it is necessary to define the 
objective function which is to be mimmised. This should be done very carefully be- 
cause different objective functions will lead to different estimations of tM, b and c as 
reported by us30. For the calculation of Kovats indices, the sum of squares of the 
differences between the known and calculated I values is a suitable objective function. 

However, this method suffers from three problems. First it is very complex to 
program. Secondly, the execution time is much longer than in non-iterative methods 
and it can take as long as half an hour to achieve maximum accuracy on a micro- 
computer. Finally the method may converge to a local mimmum rather than the 
global minimum. This is especially true with complex functions such as higher-degree 
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polynomials. The method thus requires good imtial estimates of tM, b and c as well 
as a critical evaluation of the output of the program. 

Therefore the method is not suitable for routme use and is only useful in the 
evaluation of other methods of calculating dead time. 

3.8. Others 

(a) A method was reported by SevEikfi8 and later extended by SevEik and 
Lowentapz9 which does not require calculation of the column dead time. Later6g the 
method was used for the classtfication of stationary phases. That paper showed that 
A was independent of the carrier gas flow-rate and pressure as well as a high degree 
of reproducibility with time. The method, which can be best understood by reference 
to Fig 5, uses the ratio of the differences in retention times between consecutive n- 
alkanes, A, to calculate adjusted retention times. 

Defining the difference between consecutive gross retention times as A gives: 

A, = tRz - tR(z-1) 

Now, from Fig. 4, the adjusted retention time of a peak can be expressed as 

tkz = Al + A,+ AS+. . AZ-1 + A, (64) 

where Al is the time difference between the elutlon of a substance with I = 0 and 
one with Z = 100, etc.; A 1 actually equals the adjusted retentton time of a homologue 
with a carbon number of one, i.e., Al = thl. 

Experimentally, Se&k and Liiwentap z9 found that the ratio of successive time 
differences in an homologous series was constant Therefore: 

t;,., q Al+A2+A3+ +Az_, 

Fig 5. Schematic chromatogram dlustratmg the method of &vEik and Lowentapz9. tX = Adjusted re- 
tention time; d, = time difference between consecutive homologues; A, = time difference between com- 
pound I and the nearest homologue 
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Thus 

A,el = A-‘A, 

AZ-2 = A-‘A,_l = A-=A, 

AZ-3 = A-‘AZm2 = A-3A, 

A2 
= A-l& = A2-“A 

z 

Al = A-‘A2 = Al-rA . = 

and eqn. 64 can be written as. 

tXz = A, + A,-1 + AZ-2 + . . . . . . A2 + AI 

= A, + A-‘A, + A-=A, + . . . . . A=-“A, + A’-“A, 

= A,(1 + A-’ + A-= + . . . . . A=-’ + Al-‘) 

This is a geometric senes and can be summed as follows: 

tXr = 
A,[1 - (l/A)7 = &UZtl - A) 

1 - (l/A) A Z-+1 
- A” 

(66) 

(67) 

Therefore the method allows the calculatton of the adjusted retention ttme of 
any homologue without reference to the dead time. The adjusted retention of other 
substances can be calculated by adding the difference in retention times between the 
substance and any alkane to the adjusted retention time of the alkane as calculated 
by eqn. 64 or 67. Therefore in Fig. 5 

tk, = &ml + A, 

where t& 1 is calculated by eqn. 64 or 67 and d, is the difference in retention times 
between a substance z and a standard z - 1. 

The method can also be used for extrapolation by noting that eqn. 65 means 
that the dependence of the logarithm of the difference m times, In A,, versus z IS 

linear. Thus: 

In A, = dz + e (68) 

where d and e are constants. 
SevEik and Lijwentap 2g also showed that their method leads to the conclusion 

that relative retention is dependent on the carbon number. Eqn. 64 can be expressed 
as: 

tkz+l = A,+1 + A, + A,pl + ._. . . . A3 + A2 + Al 

A,(AZ+l - A) 
= A + z+l 

A Z+l _ A” 



DEAD TIME AND KOVATS INDICES 117 

Combimng eqn. 69 with eqn. 65 gives: 

G&+1 = AA, + Az’fI;1 - -4) 

A,[A(A’+ t 
- A” 

- A’) + (AZ+1 - A)] 
= 

AZfl 
- A' 

A,(AZ+2 - A) 
= 

AZ+1 
- A' 

Dividing eqn. 70 by eqn. 67 gives: 

&+1 A,(A’+’ - A) 1 A=+l - A’ 
__ = 

tiz 
A”+’ _ A’ ‘d,’ A=+1 _ A 

AZ+2 -A 
= AZ+1 _ A 

Rearranging eqn. 72 gives: 

tkz+1 A - (l/A’) 

tkz 1 - (l/A”) 

(70) 

(72) 

(73) 

From this expression it can be seen that as z + co then tkz+l/t6z -+ A. Thus the 
method predicts that relative retention will only be constant at high values of z. 

Unfortunately a similar analysis of eqn. 5 gives a very different result 

Gzz+1 ~ = A 
tXz 

(74) 

where A = eb (see eqn. 56). This discrepancy leads to one of two difficulties with the 
method. Because the method has no independent procedure for calculating Kovats 
indices of substances other than the homologues, it is left without a consistent pro- 
cedure for calculating Kovats indices, as the usual formula (eqn. 5) is no longer valid 
and their relationship (eqn. 68) is only suitable for calculating adjusted retention 
times. It is not suitable for the reverse process of calculating z numbers (and thus I 
values) from the adjusted retention time of some unknown substance. 

The second problem arises because the method leads to different dead times 
for each homologue. Although the authors assume that this is due to errors in re- 
ported retention times, their own data show a disturbing variation in dead time 
between the measured data (high z) and the extrapolated data (low z) as shown in 
Table 1. Ettre3 l has discussed this particular problem with specific reference to the 
method of Al-Thamir et ~1.~~. He does, however, point out that the problem exists 
in all methods which calculate adjusted retention times without first estimatmg a gas 
hold-up time. 

Finally it is worth pointing out that workers from the University of New South 
Wales have found that the method is a very sensitive indicator of linearity and have 
published a series of papers 43-47 in which it is used to test the linearity of a range of 
homologues on a wide selection of columns. 
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TABLE 1 

DATA FROM SEVCfK AND L6WENTAPzg SHOWING VARIATION IN DEAD TIME 

z Measured A, A 4, flli _ trir+1 

tn. lmml (mm) tRr 
lmm) (caic ) 

20 2598 
19 1894 
18 1384 
17 1013 
16 744 
15 548 
14 406 
13 303 
12 226 
11 170 
10 130 
9 101 
8 (80 19)*t 
7 (65 08) 
6 (54 11) 
5 (46 14) 

4 (40 36) 
3 (36.16) 
2 (33.11) 
1 (30.90) 
0 (29 29) 

704 
510 

1.3804 

371 
1 3747 

269 
1.3792 

196 
13724 

142 
1 3803 

103 
1 3786 

77 
1 3377 

56 
1.3750 

40 
1.4000 

29 
1.3793 

703 56 
510 86 
370.94 
269.34 
195 57 
142 00 
103 11 
74 87 
54 36 
39 47 
28.66 
20.81 
15.11 
10 97 
? 97 
5 78 
4 20 
305 
2.21 
1.61 

2564 46 
1860 90 
1350.04 
979.10 
709.76 
514 19 
372 19 
269 08 
194 21 
139 85 
100 38 
71.72 
50.9 1 
35 80 
24 83 
1685 
1107 
6 87 
3 82 
1.61 

13781 
13784 
1 3789 
1 3795 
1 3804 
1.3815 
1.3832 
1 3856 
1 3888 
13931 
1 3996 
14090 
14222 
1.4414 
1.4745 
1.5212 
16114 
17984 
2 3727 

tM* 
(mm/ 

33 5 
33 1 
34 0 
33.9 
34.2 
33 8 
33 8 
33 9 
31 8 
30 2 
29 6 
29.3 
29.3 
29.3 
29 3 
29 3 
29 3 
29 3 
29 3 
29.3 

* Estimated column dead time, tM = tRn - t&. 
* Figures m brackets are calculated gross retention times, tRg = tRz+ 1 - A, 

(b) All methods dlscussed F far have relied on the accepted linear relationship 
between In (tR, - tM) and I, even though its linearity for homologues with low carbon 
numbers has been questioned (see section 4). However, a new method based on a 
cubic relationshlp between log t Zz and I has been reported by Heeg et al.‘O. The 
assumption of non-linearity was based on reports m the literature of experimental 
results74 as well as on thermodynamic conslderatlons”. 

Heeg et al.‘O compared several traditional methods of calculating retention 
indices with methods based on a quadratic and a cubic fit: 

log tXz = az3 + bz* + cz t d (75) 

For Kovats index calculation, eqn. ‘75 can be more conveniently expressed m the 

form: 

I = a’(log tLJ3 + b’(log t;lZ)Z + c’(log t L) + d (76) 

This comparison led to the conclusion that a quadratic fit was inadequate and that 
a cubic fit (eqns. 75 and 76) was necessary to obtain good accuracy. 

However, the method presented a problem because the authors were not able 
to mampulate the cubic equation in such a way that would allow it to be solved for 



DEAD TIME AND KOVATS INDICES 119 

tM. Thus they recommended that tM be first calculated using two linear regressions 
as outlined by Grobler and Balizs 61. Having calculated tM, the constants a, b, c and 
d can be found by using one of several methods of fitting data by a cubic equation. 

All methods designed to fit cubic and higher-degree polynomials are based on 
matrix manipulations. Such methods are relatively complex and suffer from round- 
off and subtractive cancellation errors. It is therefore essential that the maximum 
number of significant figures be carried throughout the calculations. We have found 
that the method of Gaussian elimination with partial pivotal condensation66 using 
double precision arithmetic (with 16 digits accuracy) gives acceptable results. 

A final problem with this method is us use of a dead-time value calculated by 
a linear method when the data are actually being fitted by a cubic polynomial. This 
is mathematically undesirable and likely to produce a less than optimum fit. A way 
of overcoming this problem is to modify one of the iterative methods to allow a cubic 
fit instead of a linear fit. Such an approach sacrifices speed m an attempt to improve 
the fit. 

4 LINEARITY OF THE PLOT OF LOG ADJUSTED RETENTION TIME VS CARBON NUMBER 

Almost all methods of calculating Kovats indices are based on eqn. 5 which 
states that the relationship between the log of the adjusted retention time and carbon 
number is linear. Although some authors have accepted that this relationship is linear 
over the entire range of carbon numbers7Z*73, an increasing amount of evidence has 
accumulated that the relationship is non-linear for low carbon numbers. This evi- 
dence is both experimental and theoretical 

4.1. The experimental evidence 

In a large number of papers experimenral evidence has been presented as to 
the non-linearity of the log relationship for homologues with low carbon numbers. 
The most extensive evidence has been presented by Haken, Wainwright and Srisukh 
from the University of New South Wales 42P47. Although their first paper42 (which is 
more concerned with mathematical dead time ver.su.s methane retention than the ques- 
tion of linearity) present evidence for the linearity of this relationship for C1-C9 
alkanes on both SE-30 and OV-25, a close exammation of the results in conjunction 
with results presented m a later paper43 strongly indicates that the apparent linearity 
was a result of the relative high temperatures used in the study. 

First the results on OV-25 show a calculated methane retention time which is 
consistently 2-3 set less than the measured retention time, thus indicating a slight 
non-linearity. The retention times, which were calculated using the method of Grob- 
ler and Baliz@l, are confirmed in Table 2, where the retention time of methane has 
been recalculated for five sets of conditions using the method developed by SevEik 
and L6wentapZg. Although the discrepancy is small it translates into Kovats indices 
which range from approximately 180 to 250 Secondly, although the SE-30 data show 
linearity at temperatures of 12&14O”C, a later papeP shows non-linearity for Cr- 
C4 alkanes on both SE-30 and OV-25 at 30°C. 

The other papers by these workers provide evidence for non-linearity of the 
relationship for lower members of n-alkanes, n-alcohols, n-aldehydes, acetates and 
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TABLE 2 

DATA FROM REF 42 RECALCULATED USING THE METHOD OF SEVC~K AND LOWEN- 
TAP29 

Carbon Retention A A Retenrion A A Reientlon A A 

number trme* (.wci time* isecj tune* is=) 

SE-30 (IZO’C. 30 ml/mm) (i3O”C. 40 mllminj (14o”C, 45 ml/mm) 

1 80 7 (81 
2 (1.76) (82 66) 3);35) (1.69) 
3 (1 76) (84 94) (2 28) 

4 (1 76) (88 79) (3 85) 
(1 49) 
(1 69) 

5 (1 76) 95.3 (6 51) 
6 1 87 106.3 110 

(1 69) 
1 72 

7 1 69 125 2 18.9 1.69 
8 1.71 1567 31.5 1.65 
9 208 7 52 0 

0 V-25 (120°C 45 ml/mm) (i_(PC, 45 mijmmj 

I 
2 
3 
4 
5 
6 
7 
8 
9 

l Measured retention trmes (set) are the average vaiues from two or three determmatrons 
** Calculated values are shown m brackets 

methyl ketones on a series of porous polymers as well as for n-alkanes on porous 
silica. 

Heeg et aZ.‘O found that the log relationship was non-linear and developed a 
method based on a cubic fit to determine retention indices. In addition, Heldt and 
K6sers1 presented evidence in their 1980 paper that the relationship is non-linear. 

Parcher and Johnson5 as well as Lin and ParcheF presented evidence for the 
non-linear behaviour of methane, and suggested that an effective carbon number of 
0.5 should be assigned to it in order to lineanse the log relationship. This approach 
has been discussed by Wamwright and Haken who pointed out several problems, 
including their findings that the effective carbon number of methane varied with the 
column packing, that it was closer to 1.0 than 0.5 and that other n-alkanes showed 
non-linear behaviour. There is also a fundamental problem with changing the carbon 
number of methane. This relates to the fact that the retention index system is based 
on the definition that the retention mdex of an n-alkane is 100 times its carbon 
number. The setting of the effective carbon number of methane to anything other 
than 1 is theoretically undesirable. Even if the practice led to accurate dead times, it 
would lead to difficulties m the definition and caiculation of retention indices. 

Riedo et al.52 carried out an extensive study during an g-month period. About 
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1500 retention values for n-alkanes from pentane to pentadecane were determined on 
two columns at temperatures from 30 to t50”C. The results were used to calculate 
thermodynamic properties which were then plotted, together with the results for the 
light hydrocarbons (C,-C,), as a function of the carbon number of the n-alkane. 
They concluded that “this plot is not linear. Therefore, the determination of the 
starting point of the chromatogram is not justified by linearization of the logarithms 
of the retention data of n-alkanes”. 

4.2. The theoretical evidence 

Rohrschneider74 was one of the first to discuss the linearity of the log plot in 
relation to basic thermodynamic parameters. He reported that the slope of the n- 
alkane curves depended on the ratio of the vapour pressure, p, and activity coefficient, 

7: 

&+I 
b = log ___ = 

tl* 
log J!? + log “Jz 

pztt Y2+1 
(77) 

By calculating this value for Cz through Cl0 he was able to show that n-alkane curves 
show a definite deviation from lineanty caused above all by the non-linear vapour- 
pressure dependence. 

Sojak et a1.75 proposed a reiatronship between the retention index, boiling 
point and the activity coefficient of a substance Starting with the same equation as 
did Rohrschnerder74 (eqn. 77), they extended the relationship to boiling points using 
a relation derived by Purnell for a compound at a given temperature: 

logp” = kl + kZTb 

where kl and k2 are constants. Thus: 

log @'l/P:) = btTb,z - Tb.1) 

Combining eqn. 79 with eqn. 77 gives: 

log 2 = 
log Y2 

-kz(Tb,2 - Tb,d - ___ 

1 Yl 

(79) 

Although eqns. 78-80 are only approximations and are not valid for substances 
capable of hydrogen bonding, the general derivation supports Rohrschneider’s work 
in this area. 

Bach et al.‘l discussed, using basic thermodynamics, the dependence of reten- 
tion times on boning points. By using an equation derived by Klages, in which the 
square of the boiling temperature of an organic substance is represented as an ad- 
ditive quality of the molecule, they established an analytical relationship between 
retention times and carbon numbers. Simplifying approximations enabled the 
relationship to be linearised and thus the Kovats system could be introduced. The 
range of lmearity was found to commence approximately at pentane. 
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Therefore, the theoretical evidence supports the experimental observations of 
the non-linearity of the log plot at low carbon numbers. The reason that this non- 
linearity has not been uniformly recognised is a result of several factors First the 
non-hnearity is mimmised for homologues with large carbon numbers, at high tem- 
peratures and on non-polar stationary phases Secondly, it can be obscured (if not 
large) by the mathematical treatment of the data. This problem has been discussed 
by both RohrschneiderT4 and Ettre31. 

The data in Table 3 show the problems that can arise. The retention data in 
column 1 were generated assuming a dead time of 100 set and adjusted retention 
times conforming to eqn. 79: 

In t& = 0.52 + 0.3 (81) 

Column 2 shows the inaccuracies introduced purely by rounding off the data to the 
nearest 0.1 sec. It should be noted that already an error of up to 1.3 units in Kovats 
retention indices has resulted, even though the coefficient of determination, RZ, is 
0.99998. Column 3 adds a non-linearity for C,-C,; their effective carbon numbers 
are shown in brackets. The unexpected finding is that even though the curvature is 
significant, the accuracy of fit as shown by both R* and the individual index values 
is almost identical to that in column 2. Column 4 introduces an even larger non- 

TABLE 3 

HYPOTHETICAL COMPARISON OF THE EFFECTS OF A NON-LINEAR BEHAVIOIJR OF THE 
LOWER ALKANES WITH SMALL RANDOM DEVIATIONS 

z % f% IR, k % 
(correct j lrounded inon-hear 1 inon-hear) zi2 + devaat ) (tR4 + deviat ) 

‘?ffJ 

1 102 23 102.2 101 9 [O 7]* 101.7 [O 5]f 
2 103 67 103 7 103 4 p.q* 103 2 [I 7]* 
3 106.05 106 1 10.5 9 [2.9]’ 105 5 [2 8]* 
4 109 97 1100 1100 109 5 [3 91* 
5 116.44 1164 116.4 1164 
6 127 11 127 I 127.1 127 1 
7 14470 1447 1447 1447 

1.w l * 1000 99 9 99 5 99 5 
b** 0 500 0.495 0 488 0.502 
c** 0 297 0.336 0 396 0.306 

RZ** 100000 0.99998 0 99998 0.99992 

Kovats relentdon mdrces 

1 100.0 99 3 IO03 99 7 
2 200.0 201 3 199 1 201 9 
3 300 0 3006 300.2 297 4 
4 4000 399 4 401.5 398 7 
5 5000 498 7 498 9 503 0 
6 6000 599.9 599 4 600.6 
7 700 0 700.8 7005 498.8 

* Effectwe carbon number 
l * Calculated by the method of Guardino ef al i4 

102 1 1016 
103 8 103 3 
1062 105 6 
1100 1095 
116.3 116.3 
127.0 127.0 
144.7 144.7 

99 6 99 2 
0 480 0 486 
0 435 0 408 

0 99967 0 99973 

96 8 97 3 
206.4 207 0 
301.5 298.3 
396 8 396.0 
495 9 500.1 
599 3 600 0 
703 4 701 3 
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linearity into the Ci-C4 data. This time the fit is not as good with a maximum error 
in the Kovats indices of 3. However, R2 is still a respectable 0.99992. An important 
feature of this analysis is that it is impossible to assign the less than perfect fit to its 
true cause, the non-linearity. The variation in Kovats indices appears to be com- 
pletely random. This problem is emphasised by the data in columns 5 and 6 These 
columns have had an identical deviation of fO.l set added both to the “correct” 
data and the most non-linear data. The result is that the data from both columns 
give fits of almost equal accuracy, showing that the non-linearity has been “elimi- 
nated” by mathematical manipulation. 

Therefore this analysis is in agreement with those authors28,30*31,74 who have 
argued both that random deviations can introduce significant errors into the calcu- 
lation of mathematical dead time and that the actual treatment of the data can ob- 
scure a non-linearity. In particular, Ettre3’ was critical of the use of the full range 
of homologues for this very reason, suggesting that only the linear part of the curve 
should be used. However, as pointed out in our recent papeF4, this is not really a 
problem when calculating Kovats indices where the real requirement is accurate and 
reproducible index values. The exclusion of some of the data from the analysis is 
likely to lead to significant errors in those regions which have been excluded. 

On the other hand, the problem of random deviations is a real one and thus 
a higher accuracy than has generally be recognised is required to obtain reproducible 
results. Retention times should be measured to at least the nearest 0.1 set unless very 
long times are involved, in which case a fower accuracy may be acceptable. 

5 COMPARISON OF METHODS 

Several papers i8~27,28,30,32 have previously reviewed the calculation of dead 
time in general, while a larger number of papers have compared two or three specific 
methods (see for example refs. 31, 36-38). In this section we will summarise the 
conclusions that have been drawn in previous sections of this paper as well as pre- 
senting results from our recent paper a.+ in which we carried out an extensive com- 
parison of several statistical and iterative methods. 

The use of theoretical and graphical methods as well as methods involving 
indirect measurement was discussed in section 3. As these are considered complex, 
time-consuming and of very limited usefulness, they will not be discussed further. 
Direct-measurement techniques were extensively covered in section 3.3. In general 
such methods are either experimentally difficult or likely to introduce srgnificant er- 
rors mto dead-time and retention-index calculations. The use of methane in particular 
was shown to lead to large errors in many cases and should be discouraged. The only 
method which was shown to lead to accurate results under a wide variety of condi- 
tions was the use of neon or possibly hehum together with the appropriate treatment 
of the data. In fact, the use of multiple analyses using neon is, in our opinion, the 
most reliable and accurate method of determimng system dead time and is the method 
of choice when determining absolute data such as Henry’s law values or other ther- 
modynamic data. However, due to the difficulty of using this method (gas 
chromatography-mass spectrometry has been recommended for the determination), 
a mathematical determination is more useful for the vast majority of analyses, where 
the final data are comparative, such as m the calculation of Kovats indices. 
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Of the various mathematical methods, several authors have been critical of the 
use of the classical methods, especially when compared to the use of methane. In 
particular, the results of Guberska36J7, Sharples and Vernon38 as we11 as our own 
results reported in an earlier paper J* show that large errors can result from the use 
of such methods. This problem is especially acute when inaccurate timing methods 
are used, as reported by Sharples and Vernon. We therefore believe that the inac- 
curacies inherent in these methods, together with the availability of inexpensive pro- 
grammable calculators and notebook-size computers, render them of limited use 
other than to provide an initial estimate for a more accurate iterative method. 

Of the statistical and iterative methods, the method of SevEik and Ldwentapzg 
was discussed in section 3.8a. Because of the problems discussed in that section, 
including Ettre’s3 l comments on a similar method, we believe that the method offers 
no advantage over other methods. However, it should be noted that several workers 
in our laboratories42-4’ have reported that the method is a sensitive indicator of 
linearity. This also means that it is a good indicator of the degree of scatter of the 
data and therefore holds merit as an initial test of the accuracy of a new set of 
retention data. 

This leaves the following statistical and iterative methods. 
(1) The method of Grobler and Bali&’ as extended by the technique of Van 

Tulder et ai. 

(2) The method van Guardino et a1.24 

(3) The “exact calculator method” of Garcia Dominguez et al.48 

(4) The emthod of Ambrus76, also extended by the technique of Van Tulder 
et a1.63 

(5) The iterative method mentioned by T&h and Zala62 
(6) The flexible Simplex method6’ 
(7) The method of Heeg et al.‘O 

These seven methods, together with two modified approaches allowing the optimi- 
sation of tM while simultaneous fitting a cubic or fifth-degree polynomial to the data, 
have been compared in our recent paper 64. That paper showed that the linear 
methods (methods 1-6 above) gave simiiar estimates of the mathematical dead time 
in most cases. In fact, the methods of Toth and Zalad2, Guardino et a1.24 and flexible 
Simplex67 gave identical results in all cases. 

The paper also showed that for the calculation of Kovats indices the method 
of Guardino et al.24 was not only the fastest, but the most accurate. This conclusion, 
while differing from those expressed in earlier papers, results from the recently recog- 
nised instability inherent in methods such as those of Ambrus76 or Grobler and 
Balizs6’. These methods, while providing an acceptable estimate of the equation 
parameters in the majority of cases, can lead to large errors in other cases. This 
means that all homologue combinations must be checked to reduce the likelihood of 
introducing significant errors into the calculation. However, this procedure increases 
both the program’s complexity and its running time. 

With regard to the polynomial methods, the paper concluded that in general 
they offer only a small improvement over the linear methods. Therefore, since these 
methods involve greater complexity, including the need to carry a large number of 
significant figures throughout the calculations, and can be difficult to interpret, they 
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should only be used when extreme accuracy is required or where highly variable data 
are involved. In this case, an improvement in the experimental technique is more 
likely to increase accuracy than the use of a more complex method. 

In addition these methods do not give an estimate of the mathematical dead 
time. The parameter (tM), which in the linear methods is accepted as an estimate of 
the system dead time, shows no relation to the dead time m polynomial methods and 
thus should be treated in the same manner as the other equation parameters, with 
the single exception that its value must be less than the retention time of the hom- 
ologue with the lowest retention time. 

Finally the paper investigated the problems associated with extrapolation, par- 
ticularly with the polynomial methods. It concluded that this technique should be 
avoided where good accuracy is required. 

6 CONCLUSIONS AND RECOMMENDATIONS 

In choosing a method to anaiyse the raw data from a chromatographic analy- 
sis, several factors should be taken into account. These include the accuracy of the 
original data, the required accuracy of the final result and the purpose to which the 
data are to be put. 

When the resultant data are to be used to calculate some property of the 
column or stationary phase such as Henry’s law constants, the system dead time 
should, where possible, be determined experimentally using an inert gas such as neon. 
On the other hand, where the data are to be used in a comparative method, such as 
the calculation of Kovats indices, a mathematical method is more appropriate. 

With the availability of inexpensive programmable calculators, the method of 
choice is an iterative one such as that of Guardino et al. This method, while more 
time-consuming than the classical methods, overcomes the problems with accuracy 
inherent not only in the classical methods, but to a lesser degree in the statistical 
methods. 

For maximum accuracy a polynomial method can be employed. However, not 
only must double precision be used throughout these methods, but all results should 
be critically evaluated before being accepted. In addition such methods cannot be 
used for the estimation of the system dead time. 

The reproducibility of Kovats indices is dependent not only on the math- 
ematical method used to manipulate the raw data, but also on the original data. The 
combination of a well designed experimental technique, an accurate timing mech- 
anism (nearest tenth of a second) and an appropriate mathematical method will give 
an interlaboratory reproducibility of one unit for larger values of Kovats indices and 
two units for indices below approximately 400 (ref. 64). 

7. SUMMARY 

To increase the usefulness of gas chromatography, a method of data presen- 
tation is required that removes interlaboratory variations. All such methods require 
the determination of the system dead time, with the most useful being the retention 
index system of Kovats. This paper reviews the many theoretical, experimental and 
mathematical methods of estimating system dead time and evaluates their usefulness, 
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not only m the estimation of dead time, but also in the subsequent calculation of 
Kovats indices. Recommendations are made as to the appropriate method to be used, 
and the expected accuracy in retention index values is estimated. 
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